TargetMol

BNIP3 Protein, Mouse, Recombinant (Cell-Free, His)

Product Code:
 
TAR-TMPH-02536
Product Group:
 
Recombinant Proteins
Supplier:
 
TargetMol
Regulatory Status:
 
RUO
Shipping:
 
cool pack
Storage:
 
-20°C
1 / 1

Special offer! Add £1 to your order to get a TargetMol CCK-8 Kit. Read more here.

No additional charges, what you see is what you pay! *

CodeSizePrice
TAR-TMPH-02536-100ug100ugEnquire
Special offer! Add £1 to your order to get a TargetMol CCK-8 Kit. Read more here.
Quantity:
TAR-TMPH-02536-20ug20ugEnquire
Special offer! Add £1 to your order to get a TargetMol CCK-8 Kit. Read more here.
Quantity:
Prices exclude any Taxes / VAT
Stay in control of your spending. These prices have no additional charges, not even shipping!
* Rare exceptions are clearly labelled (only 0.14% of items!).
Multibuy discounts available! Contact us to find what you can save.
This product comes from: United States.
Typical lead time: 10-14 working days.
Contact us for more accurate information.
  • Further Information
  • Show All

Further Information

Bioactivity:
Apoptosis-inducing protein that can overcome BCL2 suppression. May play a role in repartitioning calcium between the two major intracellular calcium stores in association with BCL2. Involved in mitochondrial quality control via its interaction with SPATA18/MIEAP: in response to mitochondrial damage, participates in mitochondrial protein catabolic process (also named MALM) leading to the degradation of damaged proteins inside mitochondria. The physical interaction of SPATA18/MIEAP, BNIP3 and BNIP3L/NIX at the mitochondrial outer membrane may play a critical role in the translocation of lysosomal proteins from the cytoplasm to the mitochondrial matrix. The physical interaction of SPATA18/MIEAP, BNIP3 and BNIP3L/NIX at the mitochondrial outer membrane regulates the opening of a pore in the mitochondrial double membrane in order to mediate the translocation of lysosomal proteins from the cytoplasm to the mitochondrial matrix. Plays an important role in the calprotectin (S100A8/A9)-induced cell death pathway.
Molecular Weight:
23.8 kDa (predicted)
Purity:
98%